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I. Introduction.
Ietov [1 ] bas introduced the study of 'a control system in which
the equations of the control take into account the applied locad., In parti-

cular he has taken an equation of khokhlov's that describes a loaded

hydraulic servomotor and used this to describe the action of the automatic
roll stabilization system in the Quee lvj_a._xl i In this paper the system

introduced by letov will be examined with the aid of a lemms due to Yacubovmh :
[2 ] as generalized by Kalman [3 ]. A rather complete answer can be given

for the non-critical case as well as for some critical cases.

The system to be investigated is

(1) Vv = Av - by

where v 1is the state vector and pu is the control. The control p 1is

governed by the equations

¥(w)e (o)

Te
I

(2) o=c'v -pp

w=l-9p8gn0'.
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of Naval Research under Contract No. Nonr-3693(00).
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In (1) and (2) v, b, ¢ are n-vectors, u, g, W, p, 6 are scalars and A
is an n X n matrix., The functions V¥, ¢ are scalar continuous functions

such that (1) has unique solutions and satisfy the following conditions

o0
(%2) o¢(c) >0, o £0; ¢(0) =0; [ ¢(a)do = 4w
0
(3b) y(w) >0, w>0; ¥(w) =0, ws0

%%iﬁl exists and is continuous and
dy 2 (0 when w > 0.
dw

Also the constant 6 will be taken as nonnegative and p f 0. The problem to
be considered is to find conditions on the control parameters that insure

asymptotic stability in the large for all such ¢ and V.

IT. The Non-singular Case.

We will in this section consider the case where the matrix A has 2p
simple imaginary characteristic roots and | characteristic roots with
negative real parts. Since we may take p = 0 we will be considering not
only a critical case but alsc the non-critical case. We shall assume that
(A, ) and (A, c¢') are completely controllable and completely observable
respectively in order to apply the Kalman-Yacubovich lemma. A pair (4, D)
is said to be completely controllable if x'{exp At} b = 0 for a finite interval
of t dimplies that x =0 and (A, c') is completely observable if and only
if (A', ¢) is completely controllable. Following Lefschetz [4] we shall make
the following change of coordinates x = Av - by, o =c'v - pp and so (1) and

(2) is equivalent to the following (4) provided p ¥ cta™ b,
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% = Ax - by(w)e(o)
& =c'x - py(w)e(o)

(%) w=1-6usgno
Tu = e - o

where Yy =p - c'A-lb. We shall assume without loss of generality that
is positive. Iet A be in the canonical form A = diag(K, K, 8) where
K = aiag (ikj, ..., 1k ), the k's ave distinct and positive, K is the
conjugate of X, and S an £ X !/ real stable matrix. The system (h)

then reduces to

¥ = Ky - 2¥(w)e(s)
¥y=Ky - Ty(w)e(o)
(5) zZ = Sz - dy(v)e(o)
F=g'y+ gy +e'z - py(w)e(o)

WwW=1-6usgno

g'K-ly + E'I-{"li +es™z - o

T

where y, f, g are p vectors and z, 4, e are real [{ vectors.

Consider the following Liapunov function for the system (5)
o )
(6) V=y'Qf + 2'Rz + % wo + g [ y(w)e(o)do
0
where Q is a real positive definite diagonal matrix, R is a positive semi-

definite symmetric matrix and o =20, =0, a+ B >0. Now the derivative

of (6) along the trajectories of (5) is



S T

-V =-y'"(k +QR})Y - 2'(S'R + RS)z

+(aF -~ ax%g - pe} y¥(w)e (o)
(7) + (Qf - &g - 62) Tu(we (o)
+ 2{Rd - CE—" s':L e - g e]’zﬂr(w)'t(c) + aoy(w)e (o)

+ Bp{\lf(w)tb(cr)}z + Bo{ f; %—; y(w)e(o)aoty(w)e (o) sgn o.

Now since Q 1is real and diagonal KR + QK = O. Assume that for some such Q

It
o

Qf - aK'lg - Bg
(8)

qf - K% - B = O
then an equivalent form for (7) is after completing the square is

-V =28C - aa')z + NT y(w)e(s) + q'z)?

g
+ am(n)e(a) + pal & ¥(w)o(0)ao Ty (w)e(o)sen o

where
a) -C=8S'R+RS
(10) b) T =fp
— B _ g '-l _
c)NT q = Rd 55! e ge.

Now by the Kalman-Yacubovich lemma there exists a positive symmetric matrix R

and a q satisfying C - qq' =0 and (10) a, b, ¢ if and only if

-1 N el
(11) Bp + Re (ae's™ +pe') 8 d =20
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for all real o where S, = (iwI -8) .

We shall now show that (8) and (11) imply asymptotic stability in
the large for the system (5). First we shall show that V is positive
definite in y, z and 0. By the Kalman-Yacubovich lemma the set
{z : 2'Rz = 0} 1is a linear space of unobservable states relative to
(8, a ets™ + pe?). If o or B=0 then R is positive definite by the
complete observability of (A, ¢') and hence of (S, e'). If B =0 then
clearly V is positive definite since then a >0, ILet a=0, and B >0

then V 1is positive definite if y

il
o
.

z =0, w=0 implies that o = O,

assume that o = o_ # 0. Then “Tu =0, and 021 =-6u sgno  or
%
0z1+28 —?-sgn Uo which ies a contradiction since 7y and § are positive

80 V is positive definite if a or B = Q.

Now let o >0 and B >0 and let us show that =z'Rz_ and e's'lzo
cannot be both zero at the same time unless Z, = 0. Assume the contrary.
Then by the lemma z = is such that (ae'S-l + ﬁe’)eStzo =0 for all t
50 by letting t = 0 +this implies that e'zo = 0. By differentiating Xk times
and letting t = 0 it follows that e'SkzO =0. But [e’, e'S, ..., e'Sn-l]
are linearly independent vectors and hence Zy = O. Now that this fact has

been established it follows easily by checking all possibilities that V is

positive definite.

Now by the assumption on the divergence of the integral it follows
that Vo>« as |y|, |z|, |o] >« and so by a theorem of LaSalle's [5]
all solutions of (5) are bounded and tend to the largest invariant subset
M of E= {(y, ¥, 2, o) : Wy, ¥, 2, 0) = 0}, as t 5w,

Case T a#0. Let P = (¥,5 Yo Zos O) #0 be a point such that

the solution of (5) starting at P for t =0 remains in
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E for all t. Such a solution is a solution of the linear system obtained

from (5) by letting (w)¢(o) = 0, thus the solution is:

d
]

{exp Kt]yo, 7 = {exp I—{t}yo, z = {exp St)zo

o, * g‘K'l(exp Kt}yo + E'E_l {exp Et]yo + e'S'l[exp St]zO

Q
il

-1
W = =0, w=1l+0r o, S&D O.

Now ¢ cannot be zero for a finite time interval since this would contradict
the complete observability of (A, c!') and thus w =0 and %, ;‘ 0. But

since S 1is stable there exists a T such that for all t > T,
|e'S-1(ex stlz | < i and since g'K ‘lexp Ktly + g'K “lexp Kt}7_ 1s en
P o T enm n g Xp Yo g XpP Yo

almost periodic function with zero mean value there exists a t% > T such
o,

that it is less than __E_o__ in absolute value for all % in & small interval

around t¥*. Therefore mear %, w=1+9 *r—lgo sgn o >0 which is a

contradiction, Thus the largest invariant subset of E 1is M= {0}.

0, -v =7 y(we(a) +qrz)® +

Case II: «
+ go [fg %’{, ¥(w)o(o)dol¥(w)e(o)sgn 0 « A solution re-

maining in E must be bounded for all t in (-oo,oo) since such & solution

must lie in a level arfae of V aml also for such a solution v t¥(w)e(s) = -q'z(t).

Since o =0 we may take p = 1 and thus the equation for z reduces to the

linear equation % = (s + p'%dq')z. A solution of a linear equation that is

bounded for all t must be the sum of exponentials with pure imaginary

n
exponents thus ¢(w)¢(g) is of the form ¥(w)é(g) = = a.j{exp imjt) where
-n




ay = E_j @5 = W gy O = 0. Using this form for ¥(w)¢(¢) in equation (4)

we can calculate x(t) and d(t). Since such a solution must be bounded
it follows that a, = 0 and @, # kr for any s and . Letting Xt

denote sum exeluding j = O we have

n P
x(t) = -z a (a7t b){exp iw,t} + stv.{exp ik.t} + v
-n j imj dJ -p J J (o]

v(w)e(a) = = a. lexp iw,t}
o 3

n
o(t) =0 - Z'a.(im.)_l(p + et b)exp iw.t}
CI o, 3

p -1
+ 3t ety (ik,)"{ .t} + e
—g c VJ(l 3) exp ith} etV

where vd =y are n vectors and o, is a constant., We can assume we are

J
not in case I and so ¥(w)¢(o) # 0 and since o(t)¥(w(t))e(o(t)) 2 0 it

follows that %i?; fg a(t)y(w(t))e(o(t))at = :E aja;j(iaﬁ)-l(p + ctAEib) >0

We shall have a contradiction and thus prove our theorem once we establish the
following:

Lemma. Let the linearized system obtained from (1) by placing 8§ =0
and ¥(1)¢(g) = vo be asymptotically stable for all v > 0. Then if i, is
a characteristic root of § + p'%aq‘ such that im # + ik.j for any j

then (i{.u.)o)_l (p + c'A;i b) is a non negative real number,
o

Proof:; The characteristic equation of the linearized system is
IAXI{X + Wp + c'A;lb)} and so (imo)_l (p + c'A;ib) can not be a negative
real number since in this case there is a positive VvV such that iwo is a

characteristic root of the matrix of the linearized system with ¥(w)¢(s) = Vo.
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The lemma then follows if we show Re (p + c'Ahi b) = Re {p + e's;i d) = 0.
o
The characteristic equation of § + p-2dq’ is [xI -8-p 2d4 | =
1 1 1
- - -1 -+ - =
- A 239" | = - A"24q¢t = - 5 2g?
s, = o 2aq’| {SXI [T - p72dq's] [ ISXI{ 1 - p"2q'sy 13) and so o
-1 1 -1 = -1
v o Lt . t = .0 = §! + ' =
a Rsiwg 5e Sia% Now aqq C iwg Rsimo and so 2 Re @ Rsiwg
Iq'S;i d|2 = p. By combining we have Re (p + e'S;i d) = 0.

[e] o}

Thus we have shown that (8) and (11) along with the added assumption

about the linearized system imply asymptotic stability in the large.

We will now put (8) and (11) into an invariant form that is in & form
that can be applied directly to (4) without reducing (4) to the Jordan

form (5). Assume that there exists ¢ 20, 820, a+p >0 such that

v
O

(13) Bp + Re (ozc‘A"l + Bc')A;_i b

for all real o such that o § {+k, 1k, eeey * kp} .

(ea™t + &')A;le =

(ag'k™t + %')K;if + ('Kt + ﬁE’)Ki;f + (oe gl 4 Be')S;j;d.

It follows from the fact that S is a stable matrix that the last term in

(14) is bounded for all real w and hence

(15) Re ((ag'k™ + Bg")K[f + ('K +

but the function in the brackets in (15) is of the form

p &, + ib, a, - ib
% { dJ J dJ

1 ia)-ikj +iw ﬂk}

and hence bJ. = 0 or that (agj(ikj)_l + BgJ)fj is real.

]
°

T
Q
%)
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. y=1

Now if we make the further assumption that (agj(lkj) + 5gj)fj = hj >0
b, EB

Q=diag( '—2 ,—2 gesey 2)
NN £,

P
-1
reduces to (11). By noting that M A=A~ + A" wve have:

we see that satisfies (8), and (13)

-1,-1 _ ,-1

Theorem (1A). Let A have 2p (p 2z 0) simple imaginary characteristic
roots and ! roots with negative real parts and (A,b) and (A,c') be
completely controllable and completely observable respectively. Also let
920 and p # O. Then the system (1) and (2) is asymptotically stable

in the large for all w(w) and ¢(¢) satisfying 3a and 3b provided:

a) Y=p—C'A.lb>0

uch th

Man Avdaks ~amo o N A o o n -
b) There exists constants g = Uy 6 = U, G + B >0 bat

21
Bp *+ Re( % + 5)c‘§"b =2 0 for all imaginary A not equal to a pole and

( % +B) c'A;lb has positive residues on the imaginary axis.

¢) if o =0 then the linearized system obtained from (1) by letting

=0 and ¥(1)¢(o) = vo¢ is asymptotically stable for all v > 0.
Now we shall show that the conditions given in Theorem 1A are also

necessary for the existence of a positive definite Liapunov function of the
type quadratic form plus integral of the nonlinearities.
For the first part of the argument let us assume that the equations

(L) are in the real form

¥ =Ky - f¥(vw)e(o)
2 =8z - dy(w)e(o)

(16) & =g'y +e'z - py(w)e(o)
vw=1-6usgngo

T = g‘K-ly +e's ™z - ¢

where now y, f, g are real 2p vectors and
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0 X 0 k
K = diag {( ), eeey ( Py}

-kl 0 -kp 0

By the same argument as in Popov [ 6 ] the most general Liapunov function

of the type quadratic form plus integral of the nonlinearities is
= ! + oyt + gzt + r 2.,
(17) V=y'By +2y'Byz + z'Bz + Z " +p [7w(w)e(o)as .

We shall also use the €-method used by Popov which consists of substituting

for the variables in V or V a power of € times the variable. The sign
of V or ﬁ is then determined by the lowest degree term in €. Thus in
V let y —>Y, Z2€Z 0 > ¢%y and v(w)e(o) —aeet(w)¢(c) then the

lowest degree term is y'(K'Bl + BlK)y. Since the diagonal elements in

K cancel it follows that if % is to be negative semi-definite

1 1

that K'Bl + BlK = Q0 and this implies that B

next lowest degree term in Q is 2y’(K'B2 + BQS)z and clearly for Q £0

K'B, + B

1 must be diagonal. Now the
we must have X*B, + B.S =0 or B, = O.(l)
2 2 2
Now to say that the form for V for equations (16) must be such that
B

is diagonal and B, = 0 is equivalent to saying that the form of the

1 2
Liapunov function (6) was the only one possible for the equations (5). So let

us consider now (6) and (7). By letting y »y, Y > ¥, 2 —;ezz, o - €0,

¥(w)o(g) —» e ¥(w)e(og) the lowest degree term in (7) is (QF - aK'lg - gl 'yw(w)e(o) +
{qr - aK'lE - g} y¥(w)e(o) so (8) must hold. By the necessity part of the
Kalman-Yacubovich lemma (11) must.hold and (8) and (11) imply part b of

Theorem 1A.

(1)

See Gantmacher, The Theory of Matrices, Chelsea Publishing Co., 1959, Vol. I,
page 220.
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Now by picking a \lf(w) that is equal to a constant in some
neighborhood of 1 and satisfying the conditions of 3b and ¢(g) = vo we
see that in some neighborhhod of the origin the equations reduce to the
linearized system and hence the condition ¢) is necessary. For the same
¥(¥) the determinant of the matrix of the linearized system is v|A|(p + c'A;lb)
and since a determinant is the product of the characteristic roots a) is

als0 necessary. Thus:

Theorem 1B:; If for the system as defined in Theorem 1A there exists

a positive definite Liapunov function of the type quadratic form plus
integral of the nonlinearities whose derivative is nonpositive and the

system is asymptotically stable in the large then the conditions a,b and ¢

of theorem 1A are satisfied.

IIT. The Singular Case.

Iet us return to the system (1) and assume that A has a simple
characteristic root zero and the other n-l1 characteristic roots have nega-
tive real parts. It should be noted that we could assume that A also
have 2p simple imaginary characteristic roots and use again the methods
of the previous section but we shall not do this in order to avoid too
lengthy arguments. Again we assume that (A,b) and (A, ¢') are completely
controllable and completely observable respectively. Iet us assume that

(1) and (2) are in the canonical form

fr' =5V - du
(1*)
y=-fu
i = y(w)e(o)
(2%) o=e' +gy-pu

w=1-6usgnc
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where 3, d, e are (n-1) vectors, y, £, g are scalars and S is an
(n - 1) x (n - 1) stable matrix. v' = (v', y), b' =(a', f),and cr' = (et, &).

Now making the change of coordinates

z=$=S$-d.p.

c=e'v+ gy -pu

the above system is equivalent to

sz - dy(w)e (o)

e
I

y=-1fu
(18) & =e'z - gfp - p¥(w)e(o)
w=1l-pgusgno

m=(-esTu=estztgy -0

provided vy =p - e'S-ld 74 0 and we can assume again without loss of
generality that 7y > 0. Consider the following Liapunov function for the

above system
> )
(19) V=z2'B +L T+p [ v(w)e(o)ao
0

(20) -V = - z'(S'B + BS}z + 2(Bd - %(oz - sgfy'l)s'“le - ge]'lef(w)da(cr)

+ (a - pefr Tov(w)e (o) + (a -Bgfr’l)gyw(w)dp(o)

+poy(w)e (o) + po{ fcor g_gﬁﬁ ¢(o)do}y(w)e(c)sgn o.

Now if gf >0 we may take o >0 and B >0 such that a-Bgf‘r—l=O

and complete the square as in the previous section to obtain

-V =2'(C-qq'lz + Nt y(w)o(o) + q'z)2

o
+ 5(_[0 %’h’l ¢(o)do}ey(w)e(o)segn o
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where
- C=8'" + B
T=Bp
- _ B
J; qQ = Bd 5 el.,

Now by the Kalman-Yacubovich lemma there exists a B and a q such that

C - gqq' = 0 and satisfies the above iff

-1
22 + t 2
(22) p+Ree'Srdz0

for all real ® or what is equivalent iff

-1
+ c?
p + Re Ai b

1%
(@]

for all nonzero real w.

Now by an argument similar to the one found in the previous sectlion,
we have

Theorem 2A) If A has a simple zero characteristic root and the
other characteristic roots have negative real parts then (1) and (2) or (18)
is asymptotically stable in the large for all ¢(¢), ¥W(w) satisfying 3a)
and 3b) provided

a) (A,b) and (A,c') are completely controllable and completely observ-
able.

b) 20

¢) The residue of c'A;lb at the origin is positive

d) p + Re c'AEiP 2 0 for all non zero real .

e) The linearized system obtained from (18) by letting 6 = 0 and

¥(1)¢(o) = w0 1is asymptotically stable for all v > O.
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Theorem 2B) Let A be as in Theorem 2A. Then if there exists for the
system (1) and (2) or (18) a positive definite Iiapunov function of the type
quadratic form plus integral of the nonlinearities whose derivative is

nonpositive then the conditions c) and d) of Theorem 2A are satisfied.

Remarks: It should be noted that when 9 = O the system (1) and (2) reduces
to the indirect control system of the Lurie type. Yacubovich [7] has shown
for the Lurie system that the matrix A can not have an imaginary char-
acteristic root of multiplicity greater than two and a zero characteristic
root of multiplicity greater than one. It can also be shown by the

e-method that you cannot have a positive definite Liapunov function of the
type quadratic form plus integral of the nonlinearities whose derivative is
nonpositive for the case when A has an imaginary characteristic root of
multiplicity two. Thus the results given in this paper are as general as

can be obtained by the particular type of Liapunov function.
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